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Generalities


Let us have present in this whole chapter that, although the theoretical developments and their designs are for a single work frequency, it will also be able to approximately to become extensive to an entire spectrum if one works in short band; that is to say, if it is since the relationship among the half frequency divided by the band width is much bigger that the unit.

On the other hand, the inductances and capacitances calculated in the designs presuppose not to be inductors and capacitors, that which will mean that, for the work frequencies their factors of merit reactivate Qef they are always much bigger that the unit.

Parameters of impedance and parameters of propagation


It is defined the parameters of impedance Z from a netwoek to the following system of equations


vent  =  ient Z11 + isal Z12

vsal  =  ient Z21 + isal Z22
those of admitance Y


ient  =  vent Y11 + vsal Y12

isal  =  vent Y21 + vsal Y22
and those of propagation (or transmission )


vent  =  vsal 11 - isal 12

ient  =  vsal 21 - isal 22



that if we interpret to the same one as configuration T


Z11  =  Z1 + Z3 


Z12 =  Z3  


Z21 =  Z3

Z22  =  Z2 + Z3

Y11  =  (Z2 + Z3) / (Z1Z2 + Z1Z3 + Z2Z3)


Y12  =  - Z3 / (Z1Z2 + Z1Z3 + Z2Z3)


Y21  =  - Z3 / (Z1Z2 + Z1Z3 + Z2Z3)


Y22  =  (Z1 + Z3) / (Z1Z2 + Z1Z3 + Z2Z3)


11  =  (Z1 + Z3) / Z3  =  Z11 / Z21 



12  =  (Z1Z2 + Z1Z3 + Z2Z3) / Z3  =  (Z11 Z22 - Z12 Z21) / Z21 



21  =  1 / Z3  =  1 / Z21 



22  =  (Z2 + Z3) / Z3  =  Z22 / Z21 





and where one has the property


[]  =  - 1122 + 1221  =  -1

Characteristic impedance and iterative impedance


Of the previous network we obtain


Zent  =  vent / ient  =  (vsal11 - isal12) / (vsal21 - isal22)  =  (ZL11 + 12) / (ZL21 + 22)


Zsal  =  vsal / isal  =  (Zg22 + 12) / (Zg21 + 11)

and we define characteristic impedances of input Z01 and output Z02 to the network to the following


Z01  =  (Z0211 + 12) / (Z0221 + 22)


Z02  =  (Z0122 + 12) / (Z0121 + 11)




that working them with the previous parameters is


Z01  =  (1112 + 2122)1/2  =  (Z11 / Y11)1/2  =  (ZentCC ZentCA)1/2 


Z02  =  (2212 + 2111)1/2  =  (Z22 / Y22)1/2  =  (ZsalCC ZsalCA)1/2 

where


ZentCC  =  Zent con ZL = 0 + j 0


ZentCA  =  Zent con ZL =  + j 0


ZsalCC  =  Zsal con Zg = 0 + j 0


ZsalCA  =  Zsal con Zg =  + j 0


In summary, if we have a symmetrical network (Z0 = Z01 = Z02), like it can be a transmission line, we call characteristic impedance from this line to that impedance that, making it physics in their other end, it determines that the wave that travels for her always finds the same magnitude resistive as if it was infinite —without reflection. The equations show that we can find it if we measure the impedance to their entrance, making short circuit and opening their terminals of the other side.


When the configuration works in disaptatation, we define impedances iteratives of input ZI1 and output ZI2 from the network to the following


ZI1  =  (ZI111 + 12) / (ZI121 + 22)


ZI2  =  (ZI222 + 12) / (ZI221 + 11)




that they become in


ZI1  =  [ (22 - 11) / 221] { 1 ±  [ 1 + [ 41221 / (22 - 11)2 ] ]1/2 }


ZI2  =  [ (11 - 22) / 221] { 1 ±  [ 1 + [ 41221 / (11 - 22)2 ] ]1/2 }

Adaptation of impedances

Remembering that in our nomenclature we call with S to the apparent power, P to the active one and W to it reactivates, we can find the maximum energy transfer for the following application


SL  =  iL2 ZL  =  vg2 ZL / (ZL + Zg)2

SL ZL =  vg2 [ 1 - 2ZL / ZL + Zg ] / ZL + Zg2



expression that when being equaled to zero to obtain their maximum, it is the condition of more transfer of apparent power in


ZL =  Zg
and for the active power


ZL =  Zg*

that is to say that will be made resonate the part it reactivates of the impedance eliminating it.

Function of the propagation

Generalities


If the apparent power that surrenders to the entrance of the network gets lost something inside the same one, we will say that


Sent  =  vent ient     Ssal  =  vsal isal
and we will be able to define an energy efficiency that we define as function of the propagation   in the network


e  =  (Sent / Ssal)1/2  =  (Sent / Ssal)1/2 e j  =


     =  [ (vent2/Zent) / (vsal2/ZL) ]1/2  =  (vent/vsal) (ZL/Zent)1/2 


     =  ()  =  () [Neper] + j  () [rad]

with


1 [Neper]  ~  8,686 [dB]

calling finally



propagation function


attenuation function (apparent energy loss)


phase function (displacement of phase of the input voltage)

If the network is adapted the equations they are


e  =  (vent/vsal) (Z02/Z01)1/2 =  (vent/vsal) (ZL/Zg)1/2 

Symmetrical and disadapted network


Let us suppose a symmetrical and disadapted network now


Z0 = Z01 = Z02 
symmetry

Z0 = ZL  Zg
disadaptation to the output

and let us indicate in the drawing electric fields (proportional to voltages) that travel: one transmitted (vtra) and another reflected (vref). In each point of the physical space of the network, here represented by Q, these waves generate an incident (vINC) and then salient (vSAL) of the point. This way then


vtraSAL  =  vtraINC e-

vrefSAL  =  vrefINC e-



and for Kirchoff


itraSAL  =  itraINC

irefSAL  =  irefINC
finding in this point Q at Z0 both waves


Z0  =  vtraINC  / itraINC  =  vrefINC / irefINC
determining with it to the entrance of the network


Zent  =  vent / ient  =  Z0 [ (e + v e-) / (e - v e-) ]

being denominated to v like coefficient of reflection of the voltages. Now, as


- isal  =  (vtraSAL+vrefSAL) / ZL  =  (vtraSAL+vrefSAL) / Z0
it is


v  =  vrefSAL / vtraSAL  =  (ZL - Z0) / (ZL + Z0)

consequently, working the equations


Zent  =  Z0 [ (ZL + Z0)e - (ZL - Z0)e- ] / [ (Z0 + ZL)e + (Z0 + ZL)e- ]

that it shows us that


vent  =  - isal [ (ZL + Z0)e - (ZL - Z0)e- ] / 2  =  vsal ch  - isal Z0 sh

ient  =  - isal [ (Z0 + ZL)e + (Z0 + ZL)e- ] / 2Z0  =  (vsal/Z0)  sh  - isal Z0 ch
being able to see here finally


11  =  ch

12  =  
Z0 sh

21  =  sh / Z0

22  =  
ch  

Asymmetrical and adapted network


One can obtain a generalization of the previous case for an asymmetric and adapted network


Z01  Z02 
asymmetry

Z01 = Zg
adaptation to the input


Z02 = ZL
adaptation to the output


To achieve this we take the system of equations of the propagation and let us divide


vent / vsal =  11 - isal 12 / vsal  =  11 - 12 / Z02

ient / (-isal)  =  vsal 21 / (-isal)  - 22  =  Z02 21  - 22
of where (to remember that []  =  -1)


e-  =  (Ssal / Sent)1/2  =  [ (vsal (-isal) / (vent ient) ]1/2  =


      =  [ (1122)1/2 - (1221)1/2 ] / (1122 - 1221)  =  (1122)1/2 - (1221)1/2  =


      =  ch - sh 


ch     =  (1122)1/2

sh     =  (1221)1/2

We can also deduce here for it previously seen


th     =  sh / ch  =  (ZentCC ZentCA)1/2  =  (ZsalCC ZsalCA)1/2
being obtained, either for the pattern T (star) or  (triangle), obviously same results


sh     =  (Z01Z02)1/2 / Z3  =  ZC / (Z01Z02)1/2

th     =  Z01 / (Z1 + Z3)  =  Z02 / (Z2 + Z3)  =  1 / Z01 (YA + YC)  =  1 / Z02 (YB + YC)


Z01  =  [ (Z1 + Z3) (Z1Z2 + Z1Z3 + Z2Z3) / (Z2 + Z3) ]1/2  =


       =  1 / [ (YA + YC) (YAYB + YAYC + YBYC) / (YB + YC) ]1/2

Z02  =  [ (Z2 + Z3) (Z1Z2 + Z1Z3 + Z2Z3) / (Z1 + Z3) ]1/2  =


       =  1 / [ (YB + YC) (YAYB + YAYC + YBYC) / (YA + YC) ]-1/2



Adapting network of impedances, disphased and attenuator


 Continuing with an asymmetric and adapted network had that


Z1  =  (Z01 / th) - Z3

Z2  =  (Z02 / th) - Z3

Z3  =  (Z01Z02)1/2 / sh 

of where the transmission of power through the adapting network will be


Ssal / Sent  =  e- 2  =  e- 2 argsh (Z01Z02)/Z3  =  [ Z3 / [ (Z01Z02)1/2 + (Z01Z02 + Z32)1/2 ]2

Similarly it can demonstrate himself that


YA  =  (Y01 / th) - YC

YB  =  (Y02 / th) - YC

YC  =  (Y01Y02)1/2 / sh 


Ssal / Sent  =  [ YC / [ (Y01Y02)1/2 + (Y01Y02 + YC2)1/2 ]2
Design attenautor


Be the data for an adapted and asymmetric network


     =   [Neper] + j   [rad]  =   [Neper] + j  0     () 


Ssal / Sent  =  Psal / Pent  = ...    1    Ssal() / Sent()

Z01  =  Z01 + j 0  =  Rg  = ...


Z02  =  Z02 + j 0  =  RL  = ...





The design can also be made with Ssal/Sent > 1, but it will imply in the development some component negative resistive, indicating this that will have some internal amplification the network and already, then, it would not be passive.


We obtain the energy attenuation subsequently


   =  ln (Pent / Psal)1/2  = ...

and with this


sh    =  (e - e-) / 2  = ...


th     =  (e2 - 1) / (e2 + 1)  = ...


R3  =  (RgRL)1/2 / sh  = ...


R1  =  (Rg / th)R3  = ...


R2  =  (RL / th)R3  = ...

Design disphasator


Be the data for an adapted and symmetrical network


     =   [Neper] + j   [rad]  =  0 + j    =  () 


Z0  =  R0 + j 0  =  Z01  =  Z02  =  Rg  =  RL  = ...


Ssal / Sent  =  Wsal / Went  =  (vsal/vent)2 Z01/RL  =  vsal/vent  =  1 e j

        = ...     0

f  = ...





Of the precedent equations the phase function is calculated


   =  - j ln (Went/Wsal)1/2  =  - j (vent/vsal)  =  - j ln e -j  =  -    = ...

what will determine us


X3  =  - R0 / sen   = ...


X1  =  X2  =   - (R0 / tg ) + X3  = ...

that it will determine for reactances positive inductors (of high Qef to the work frequency)


L3  =  X3 /   = ...


L1  =  L2  =  X1 /   = ...

or for the negative capacitors


C3  =  -1 / X3  = ...


C1  =  C2  =  -1 / X1  = ...

Design attenuator and disphasator


Be an adapted and asymmetric network, where the design is the same as for the general precedent case where the component reactives of the generator are canceled and of the load with Xgg and XLL


vsal/vent  =  vsal/vent e j




Ssal / Sent  =  Ssal() / Sent()  =  Wsal / Went  =  (vsal/vent)2 Z01/ZL  =

 

     =  (vsal/vent2 Rg/RL)  e j2

Z01  =  R01  =  Rg

Z02  =  R02  =  RL

     =  ()  =  () [Neper] + j  () [rad]





This way, with the data


Zg  =  Rg + j Xg  = ...


ZL  =  RL + j XL  = ...


f  = ...


vsal/vent  = ...1


  = ...0  (if the network puts back the phase then  it is negative)

we calculate (the inferior abacous can be used we want)


   =  ln (vent/vsal2 RL/Rg)1/2  = ...


   =  -   = ... 

Z3  =  (RgRL)1/2 / sh  =  (RgRL)1/2 / (cossh + j sench)  = ...


Z1  =  (Rg / th) - Z3  =  [Rg / (1 + j thtg)(th + jtg)] - Z3  = ...


Z2  =  (RL / th) - Z3  =  [RL / (1 + j thtg)(th + jtg)] - Z3  = ...

and of them their terms resistives


R1  =  R [Z1]  = ...


R2  =  R [Z2]  = ...


R3  =  R [Z3]  = ...

as well as reactives


X1  =  I [Z1]  = ...


X2  =  I [Z2]  = ...


X3  =  I [Z3]  = ...


Subsequently and like it was said, to neutralize the effects reagents of the generator and of the load we make


Xgg  =  - Xg  = ...


XLL  =  - XL  = ...


Finally we find the component reactives. If they give positive as inductors (with high Qef)


L1  =  X1 /   = ...


L2  =  X2 /   = ...


L3  =  X3 /   = ...


Lgg  =  Xgg /   = ...


LLL  =  XLL /   = ...

and if they are it negative as capacitors


C1  =  -1 / X1  = ...


C2  =  -1 / X2  = ...


C3  =  -1 / X3  = ...


Cgg  =  -1 / Xgg  = ...


CLL  =  -1 / XLL  = ...
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